SUSTAINABLE TRADE AND GLOBAL VALUE CHAINS FOR TEXTILE PRODUCTS

BASELINE ASSESSMENT

2017 Jiangsu
Contents

Acknowledgements ... 2

1. Introduction ... 3
 1.i. Project Overview .. 3
 1.ii. Research Methodology ... 4

2. Overview of Textile Industry and Textile Trade in Jiangsu Province 5
 2.i. Textile Industry and Textile Trade of Jiangsu Province .. 5
 2.ii. Green Trade Measures in Textile & Apparel Industry .. 7

3. GVC Position and Pollution Decomposition of Jiangsu’s T&A Industries 8
 3.i. Global value chains and Jiangsu’s textile & apparel industry .. 8
 3.ii. Lower value-added stages are more polluting .. 9
 3.iii. Breakdown of pollution sources in Jiangsu’s textile and apparel Industries 10

4. Knowledge and capacity gaps ... 11

5. Market and policy landscape ... 12
 5.i. Growing global market for sustainably certified textile products ... 12
 5.ii. National and provincial level policy landscape ... 12
 5.iii. Actions and initiatives from the industry .. 13

6. Key measures to improve sustainable production and green trade 14

Appendix: HS codes for textile products ... 15
Acknowledgements

This assessment was commissioned by the Environment and Trade Hub of the United Nations Environment Programme (UN Environment), as a key output of the Environment and Trade Hub’s project on “Building Capacities for Sustainable Textile Trade and Global Value Chains in Jiangsu”.

This study has been produced in collaboration with the Research Institute for Global Value Chains, University of International Business and Economics (RIGVC UIBE).

The project was managed by Ying Zhang, Programme Management Officer of the Environment and Trade Hub (UN Environment), under the overall guidance of Anja von Moltke, head of the Environment and Trade Hub (UN Environment) and Asad Naqvi, Head of PAGE Secretariat. Substantive contributions were provided by Yabin Wu, the Executive Dean of RIGVC UIBE; Ran Wang, the Head of Green Global Value Chain Department (RIGVC UIBE); Xiuxiu Zheng, Doctoral Student of RIGVC UIBE, and Kenneth Rhemrev, Environment and Trade Hub (UN Environment).

UN Environment and RIGVC UIBE would like to thank the following experts and colleagues for their review and contribution: Regina Taimasova, Advisor on Sustainability Standards & Value Chains at the International Trade Centre (ITC); Dr. Xubiao Zhang, National Project Manager of the International Labour Organization (ILO) Office for China and Mongolia; Weijia Xia, Deputy Director of Technology Development of China Association for Standardization; Cindy Lin, Researcher of Natural Resource Defense Council; Yizhi WANG, Project Specialist of China National Textile and Apparel Council (CNTAC); Kevin Munn, Programme Officer of the Chemicals and Health Branch of UN Environment; Santiago Fernandez De Cordoba, Senior Economist of United Nations Conference on Trade and Development (UNCTAD); Yibo Dai, Deputy General Manager of China WTO Tribune; Yin Yuan, Department Chief of China National Cleaner Production Centre; and Kehua Hu, Deputy Director, Office for Social Responsibility of China National Textile and Apparel Council (CNTAC), Li Weijun, Director of China-German Center for Sustainable Development, and Yang Xiao, Project Manager of China-German Center for Sustainable Development.
1. Introduction

China is the second largest economy in the world, and having positioned itself as an emerging economic power, it is gradually shifting its development focus toward sustainability. In doing so, the Chinese have established a sustainable development framework, known as ‘Ecological Civilization’. The concept has received unprecedented attention from high-level leadership in China, both at the central and local levels, and is also gaining recognition internationally. To tackle various development challenges, the Chinese Government has expressed its interest and has committed to work with Partnership for Action on Green Economy (PAGE), starting at the provincial level in Jiangsu.

Jiangsu province is home to around 80 million people and is one of the most technologically advanced provinces in the country, with a strong natural resource base. To maintain its competitiveness and achieve inclusive development for its citizens, the province has committed to ‘green’ its economy.

The textile industry is one of the pillar industries in Jiangsu and has been playing an important role in Jiangsu’s economy, exports, industrial upgrading, as well as its transition to an inclusive green economy. Jiangsu is also one of the leading provinces in China in textile production and export, taking up around 20% of total textile exports in China. The Development Plan for Textile Industry in Jiangsu report released in 2016 outlined the main objects and focus areas for the development of the textile industry in the period of the 13th Five Year Plan. It highlighted the importance of green and sustainable development for the textile industry and the opportunities arising from upgrading the export structure while moving up along global value chains.

1.i. Project Overview

United Nations Environment Programme (UN Environment), represented by its Environment and Trade Hub, and in collaboration with International Trade Centre (ITC) and Research Institute for Global Value Chains (RIGVC), initiated the project “Building Capacities for Sustainable Textile Trade and Global Value Chains in Jiangsu”. This project aimed at assessing the current development of sustainable textile trade and value chains in Jiangsu, identifying knowledge and capacity gaps, as well as opportunities and challenges in improving the sustainability of textile trade and value chains in Jiangsu. It also supported textile companies in Jiangsu by enhancing awareness on sustainable trade and value chain upgrading. This project assisted Jiangsu in its transition towards an inclusive green economy and in achieving its industrial upgrading and green development goals, as outlined in the province’s 13th Five Year Plan.

This Baseline Assessment was developed to identify knowledge and capacity gaps, opportunities and challenges in improving sustainability. It covered the market access and competitiveness concerns, as well as other barriers to the enhanced sustainability in textile trade and value chains. Findings of the assessment fed into the targeted training held from September 12th to 13th 2017 in Suzhou city, and was used to guide through the development of the Action Plan for local policy makers and textile companies.
1.ii. Research Methodology

The research was composed of the following sections:

1. Policy review: national and provincial policies were reviewed, including:
 - The development plan of the textile industry (2016-2020),
 - Guidance on the strengthening both international cooperation in order to improve the status of global value chains in China's industry, and work plans for recycling and transforming industrial parks of Jiangsu province,
 - Management methods of provincial eco-industrial park in Jiangsu province.

2. Survey: an enterprise survey was conducted with 37 textile & apparel enterprises in Jiangsu province.

3. Interviews: over 20 interviews were conducted with experts from Jiangsu Provincial Department of Commerce, Jiangsu Provincial Environmental Protection Office, China National Textile and Apparel Council, and enterprise participants during the training.

4. Field study: Five field studies were conducted with Jiangsu Provincial Department of Commerce, Jiangsu Provincial Environmental Protection Office, Shengze town of Wujiang city, the fifth ZHDC-CNTAC conference on hazardous chemical control & sustainable manufacturing in textile products (in Shanghai), and China textile and clothing industry social responsibility annual meeting (in Shanghai).
2. Overview of Textile Industry and Textile Trade in Jiangsu Province

Jiangsu province is located in the downstream coastal areas along the Yangtze River (see fig 1.1 below). Due to its prime geographical location, Jiangsu province is abundant with the natural resources need for cotton, linen and other textile industries. Jiangsu province has subsequently formed a complete textile industrial production value chain with processing industry, raw material industry and manufacturing industry, and the textile industry has therefore become one of Jiangsu’s pillar industries.

![Geographical location of Jiangsu Province in China](image)

Figure 2.1 Geographical location of Jiangsu Province in China

2.i. Textile Industry and Textile Trade of Jiangsu Province

The international trade of textile industry boomed in the early 2000s. While textile exports and imports dropped dramatically in 2009 due to the global economic crisis, a rebound occurred rapidly afterwards. This increasing rate in growth however stopped by 2011 and textile export growth has languished below 10% since, with imports declining since 2014.

![Annual growth rates of textile import and export in Jiangsu province](image)

Figure 2.2 Annual growth rates of textile import and export in Jiangsu province

Source: Statistical Yearbook of Jiangsu Province
However, the decline in Jiangsu’s exports has been lower than the national average. In 2014, Jiangsu’s chemical fiber products accounted for almost one-third of China’s total output in this sector, and its cloth export accounted for over 10% of the total export of China. Jiangsu as a result was still the third largest exporting province in China in 2016, after Zhejiang and Guangdong (see figure 2.3).

![Figure 2.3 Textile exports of main provinces in 2016 ($100 million)](source: China Chamber of Commerce for Import and Export of Textile and Apparel (CCCT))

As a labor-intensive industry, the textile industry in Jiangsu had over 1,300,000 employees in over 7000 enterprises in the year 2008. Following rapid growth, the number of employees peaked in 2008 at over 13 million. However, due to the shrinking market, by 2015, the number of employees dropped to just 8,365,000 (see table 2.1).

Table 2.1 Size of assets and employees of enterprise above designated size in Jiangsu’s textile industry from 2000 to 2015

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of enterprises</th>
<th>Total assets (CNY billion)</th>
<th>Number of employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>2348</td>
<td>113.440</td>
<td>8,313,000</td>
</tr>
<tr>
<td>2002</td>
<td>2727</td>
<td>127.059</td>
<td>8,503,000</td>
</tr>
<tr>
<td>2003</td>
<td>3132</td>
<td>151.155</td>
<td>9,161,000</td>
</tr>
<tr>
<td>2004</td>
<td>3665</td>
<td>176.114</td>
<td>10,054,000</td>
</tr>
<tr>
<td>2005</td>
<td>4740</td>
<td>214.910</td>
<td>10,947,000</td>
</tr>
<tr>
<td>2006</td>
<td>5510</td>
<td>256.228</td>
<td>11,498,000</td>
</tr>
<tr>
<td>2007</td>
<td>6382</td>
<td>294.214</td>
<td>12,410,000</td>
</tr>
<tr>
<td>2008</td>
<td>7013</td>
<td>333.915</td>
<td>13,322,000</td>
</tr>
<tr>
<td>2009</td>
<td>8239</td>
<td>329.625</td>
<td>11,800,000</td>
</tr>
<tr>
<td>Year</td>
<td>Number of enterprises</td>
<td>Total assets (CNY billion)</td>
<td>Number of employees</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>2010</td>
<td>8493</td>
<td>388.952</td>
<td>12,451,000</td>
</tr>
<tr>
<td>2011</td>
<td>5227</td>
<td>361.494</td>
<td>9,622,000</td>
</tr>
<tr>
<td>2012</td>
<td>4848</td>
<td>383.647</td>
<td>9,122,000</td>
</tr>
<tr>
<td>2013</td>
<td>4880</td>
<td>418.692</td>
<td>8,958,000</td>
</tr>
<tr>
<td>2014</td>
<td>4730</td>
<td>434.068</td>
<td>8,662,000</td>
</tr>
<tr>
<td>2015</td>
<td>4632</td>
<td>440.805</td>
<td>8,365,000</td>
</tr>
</tbody>
</table>

Source: Jiangsu provincial bureau of statistics

2.ii. Green Trade Measures in Textile & Apparel Industry

The European Union, United States, Japan, South Korea and Hong Kong are Jiangsu's five major textile & apparel exporting markets. The green trade measures involving textile and apparel products cover a wide range of issues, such as:

1. Excessive level of formaldehyde in textiles;
2. Azo dyes used in fabrics and clothing;
3. Excessive amounts of arsenic, chromium, copper, lead, mercury and nickel in textiles;
4. Marks or labels of textiles that do not conform to the laws of the importing country;
5. Textile packaging that does not meet the standards of environmental protection or the requirements of green packaging;
6. Manufacturer not obtaining the ISO9000 quality system certification;
7. Manufacturer not obtaining the ISO14000 environmental certification;
8. No environmental labeling on textiles;
9. Textiles exported to the United States that do not have the FTC logo certification (certified by US Federal Trade Commission);
10. Textiles exported to the United States that do not have the CPSC logo certification (certified by Consumer Product Safety Commission).

Another green trade measure in the textile & apparel industry that China has not yet adapted to is the Product Environmental Footprint (PEF), part of the EU's green product evaluation system. The PEF is based on the Product Life Cycle (LCA) assessment method, which is a test for imported products in every production stage and the whole supply chain. Evaluation of PEF covers the whole lifecycle of the production process, including the extraction and processing of raw materials, product manufacturing, transportation, product selling, product using, maintenance, recycling and eventually the whole process of waste disposal, etc. Only after providing the PEF evaluation data and with the evaluation index score above 70% can products be allowed to enter into the EU market. Countries such as Japan, South Korea have
systematically carried out the research and application of LCA long before. However, despite being the world’s largest exporter of textiles, China however so far has no LCA database in response to the PEF evaluation system, nor does it have any authoritative evaluating agencies. From the enterprise level, meeting all the requirements and standards of PEF has therefore been an immense challenge.

3. GVC Position and Pollution Decomposition of Jiangsu’s T&A Industries

3.i. Global value chains and Jiangsu’s textile & apparel industry

The value chain was originally known as the production chain and involves the creation and development of a product. A value chain can be defined as the full range of activities that firms and workers carry out to bring a product or service from its conception to its end use and beyond. This includes activities such as R&D, manufacturing, marketing, distribution, and support to the final consumer. These activities involve different firms and are often spread over different countries, and become Global Value Chains, as shown in Figure 3.1. These complex global production arrangements have transformed the nature of trade.

In terms of textile and apparel industries, these global value chains start with the design of textiles & apparel, along with the initial stages of the production process. Preliminary sketches evolve into cloth with patterns, and after printing and dyeing, finalized products are transported to customers all over the world. The production and consumption chains form a cycle of loops, whereby there is additional value add at each stage.

![Figure 3.1 Value Chain of Textile & Apparel Industry (Smile Curve)](source: summarized by authors)

Actors in each stage of the textile value chain are represented above in Figure 3.2, from fiber through finished products into distribution and sales. The textile & apparel value chain is comprehensive and even expansive, with textile components showing up in a variety of end markets, from construction materials to air filters, from automotive fabrics to upholstered furniture. The industry can consequently be segmented in various ways, such as:

- By fiber type (e.g. natural fibers like cotton and wool vs. synthetic fibers like nylon)
- By fabric production process (e.g. using yarn in knitting or weaving vs. using non-woven processes)
- By fabric finishing process (e.g. unfinished fabrics vs. coated fabrics)
- By end use (i.e. whether it is an apparel product, or serves another end use, such as medical products, construction products or automotive products).

Jiangsu’s textile industry is in the low value-added and simple processing production stage of the global value chain. Most of Jiangsu’s textile enterprises are engaged in fiber producing, textile weaving, dyeing, printing and finishing processes, which are at the bottom of textile value chain.

3.ii. Lower value-added stages are more polluting

Along the global value chain, the amount of pollution or the ecological footprints produced by clothing production at every stage is also different. Deconstructing the production processes and the ecological footprint of each stage will help to identify hotspots for sustainability im-
provements. Generally, R&D, publicity and marketing processes are cleaner than the manu-
facturing process. These polluting stages mainly occur in the manufacturing process locating
at the middle and top of the production chain.

![Figure 3.3 EKC Curve of Textile & Apparel Industry Production](image)

Source: summarized by authors

3.iii. Breakdown of pollution sources in Jiangsu’s textile and apparel Industries

Our analysis shows that the main environmental impacts of the textile & apparel industry come
from water pollution. Specifically, chemical fiber producing, printing and dyeing are the most
polluting processes. 16% of the waste water discharge originates from the chemical fiber in-
dustry, and 80% of the waste discharge comes from the printing and dyeing industry. A more
detailed breakdown illustrates how different kinds of chemicals produce different types of pol-
lution.

![Figure 3.4 Textile & Apparel Production Process and Corresponding Pollution Decomposition](image)

Source: summarized by authors
Most textile production in China is thus pollution-intensive. Severe environmental problems have however forced the industry to pursue the transition towards greener and cleaner production models. Yet this transition cannot be separated from technological and industrial upgrading.

4. Knowledge and capacity gaps

Through the consultation and interviews with experts from Jiangsu Provincial Department of Commerce, Jiangsu Provincial Environmental Protection Office and China National Textile and Apparel Council, and in the communication with Chinese and foreign textile and apparel enterprises such as H&M, GAP, Shenghong Group, Hengli Group, knowledge and capacity gaps were identified in the following areas:

1. Lack of understanding of green trade, green economy and sustainable value chains

Many textile enterprises do not have a clear understanding of green trade or the green economy. Most of the managers of textile enterprises knew about environmental protection regulations and rules, but knew little about how green trade and green production could be connected. They were keen to know about global value chains and the embodied pollution in their production process, and how green and sustainable global value chains could help with the clean and green production of their textile products.

2. Lack of knowledge about global market trends in sustainably certified textile products

Most of the textile enterprises managers still believed that green trade measures are rare and had little knowledge about global market trends in sustainably certified textile products. Most of them were not well prepared for the sustainability standards and non-tariff measures adopted by foreign importing countries on textiles.

3. Lack of information on voluntary sustainability standards

Most of the textile enterprises had never heard about voluntary sustainability standards. Some of them had heard about these standards but did not understand the implications to their own production and exports. There was also a lack of information on these standards and how companies could comply with them.

4. Demand for good examples and experience at the corporate level, especially on the use of energy and chemicals as two key sources of pollution

Enterprises interviewed expressed strong demand for examples and successful experience in managing production, especially from the perspective of energy and chemicals use in production. They showed high interest to learn from best practice from their peers in green and sustainable production.
5. Market and policy landscape

5.i. Growing global market for sustainably certified textile products

Global sustainable standards and certification markets have been developing rapidly over the past few years. Voluntary Sustainable Standards (VSS) adopted by non-government agencies have also been on the rise. According to statistics from ITC, among the commodities of bananas, cocoa, coffee, cotton, palm oil, soybean, sugar, tea and forest products, 14 kinds of VSS are involved. While organic cotton production around the world has continued to grow, the negative social and environmental impacts associated with cotton cultivation have undermined the sustainable development of the cotton industry. The Swiss association of the Better Cotton Initiative certification (BCI) has been promoting the development of sustainable cotton production, making global cotton cultivation and production not only more financially advantageous to cotton farmers, but also more sustainable, ensuring long term development. In China, 54 thousand hectares of cottons had received BCI certification by 2015, reflecting the environmentally-friendly consumption demand of retailers/buyers. For example, H&M banned cotton from Uzbekistan due to the connection of the cotton industry with forced labor and child labor (the ban was extended to Turkmenistan in 2016). H&M will also move towards 100% of its cotton originating from sustainable resources, with full traceability by 2020 and in compliance with BCI, organic, and other voluntary standards.

5.ii. National and provincial level policy landscape

In Asia, textile and apparel industries issued in 2016 a declaration of all participants’ responsibility in regional cooperation throughout the supply chain. This involved the Bangladesh textile manufacturing and export association, the garment manufacturers association of Cambodia, the China National Textile and Apparel Council, the Myanmar garment manufacturers association, Pakistan textile manufacturers association, Pakistan knitwear manufacturers and exporters association, and the Pakistan towel manufacturers association. This declaration is committed to building information sharing platforms and capacity-building mechanisms, advocating and supporting the responsible corporate behavior. It aims to improve the sustainable development of the whole value chain, and thus also tackle challenges such as human rights.

The 2016-2020 development plan of the textile industry in China emphasizes that a large number of new technologies should be widely applied in energy conservation and consumption reduction. The fresh water intake required for printing and dyeing 100 meters of cloth has decreased from 2.5 tons to less than 1.8 tons, and the water return rate has increased from 15% to more than 30%, fully completing the binding targets of energy consumption reduction, water intake reduction and total pollutant emission reduction. The proportion of fiber used for

4 According to PPT of the training experts: Weijia Xia, Deputy Director of Technology Development of China Association for Standardization
5 Ibid.
6 Ibid.
fiber processing increased from 9.6 percent in 2010 to 11.3% in 2015. Recycling, sorting and comprehensive utilization of the industrial chain of waste textiles were also launched. On this basis, China will complete its green development objective, forming a system of green manufacturing in textile industry, with clean production technology widely applied. By 2020, the textile output energy consuming per unit will cumulatively fall by 18%, with water consumption per unit of industrial added value falling by 23% and total emission of major pollutants falling by 10%. A batch of textiles recycling key technology will be developed and the amount of recycling textile fibers will continue to increase.

In addition, in November 2016, the Ministry of Commerce, National Development and Reform Commission, Ministry of Science and Technology, Ministry of Industry and Information Technology, People's Bank of China, the General Administration of Customs, Statistics bureau jointly issued a document titled "Guidance on the strengthening of international cooperation to improve the status of global value chain of China's industry". The guidance stated that the Chinese government will enhance the capacity of resource allocation by deepening the cooperation in global value chain. The combination of manufacturing and services is needed to attract high quality resources overseas and enhance the contribution of the domestic value-added.

Jiangsu province has also implemented a series of green trade and green employment policies. The environmental protection department has strengthened supervision and inspection on pollution sources of key export enterprises and has conducted administrative punishments such as fines and rectification requests on environmental violations. Pilot zones were established to promote the transformation and upgrading of processing trade. Trade authorities have been supporting qualified processing trade enterprises in carrying out high technology, high value-added and non-polluting business.

5.iii. Actions and initiatives from the industry

On 10 December 2015, the 'China National Textile and Apparel Council' and 'Zero Discharge of Hazardous Chemicals' jointly organized a seminar on green manufacturing and enterprise environmental responsibility management in Beijing. In this seminar, Amway Group, Bosideng Group and 48 other enterprises from textile, chemicals, synthetic leather industries launched the textile supply chain and green manufacturing industry innovation alliance, taking a strong step towards achieving the green development of textile industry. This alliance aims to promote the disclosure of information regarding environmental performance, supply chain management, hazardous chemicals use and sustainable technology innovation. It also pushes the industry to move forward towards the high-end production stage and to achieve sustainable growth.

6. Key measures to improve sustainable production and green trade

Over the past few years, a series of policy measures were adopted to support and accelerate the transition and upgrading of textile industry in Jiangsu Province. The 13th Five Year Plan outlines targets for industry growth, technological innovation, structural adjustment, and green development in textile industries, with focus on intelligent manufacturing and green manufacturing. Some key measures included:

1. Strengthening key technological breakthroughs in the industry including new chemical fiber material, green dyeing technology, and intelligent textile equipment;

2. Promoting innovation in the textile industry by using the Internet, big data, cloud computing, and the Internet of Things (IoT);

3. Expanding the supply of high-end textile and apparel products through design innovation and the collaboration of upstream and downstream along the entire supply chain;

4. Enhancing the quality assurance capability by strengthening the quality control of the whole value chain of the product, from raw material purchase to production and sales;

5. Promoting the use of international standards and participating in the development of international standards that reflect the needs of developing countries;

6. Establishing the risk control mechanism of textile chemicals and encouraging enterprises to improve chemical and environmental information disclosure.
Appendix: HS codes for textile products

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 50:</td>
<td>Silk</td>
</tr>
<tr>
<td>HS 51:</td>
<td>Wool, fine or coarse animal hair; Horsehair yarn and woven fabric</td>
</tr>
<tr>
<td>HS 52:</td>
<td>Cotton</td>
</tr>
<tr>
<td>HS 53:</td>
<td>Other vegetable textile fibers; Paper yarn or woven fabrics of paper yarn</td>
</tr>
<tr>
<td>HS 54:</td>
<td>Man-made filaments</td>
</tr>
<tr>
<td>HS 55:</td>
<td>Man-made staple fibers</td>
</tr>
<tr>
<td>HS 56:</td>
<td>Wadding, felt and nonwovens; special yarn; twine, cordage, ropes and cables and articles thereof</td>
</tr>
<tr>
<td>HS 57:</td>
<td>Carpets and other floor coverings</td>
</tr>
<tr>
<td>HS 58:</td>
<td>Special woven fabrics; tufted textile fabrics; lace; tapestries; trimmings; embroidery</td>
</tr>
<tr>
<td>HS 59:</td>
<td>Impregnated, coated, covered or laminated textile fabrics; textile fabrics of a kind suitable of industrial use</td>
</tr>
<tr>
<td>HS 60:</td>
<td>Knitted of crocheted fabrics</td>
</tr>
<tr>
<td>HS 61:</td>
<td>Articles of apparels and clothing accessories, knitted or crocheted</td>
</tr>
<tr>
<td>HS 62:</td>
<td>Articles of apparels and clothing accessories, not knitted or crocheted</td>
</tr>
<tr>
<td>HS 63:</td>
<td>Other made-up textile articles; sets; worn clothing and worn textile articles; rags</td>
</tr>
</tbody>
</table>